Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

Calcium(II) meso-2,3-diphenylsuccinate heptahydrate

Gregory Morin, Maoyu Shang and Bradley D. Smith*

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556-5670, USA
Correspondence e-mail: smith.115@nd.edu

Received 26 July 1999
Accepted 31 January 2000

The title compound, $\left[\mathrm{Ca}\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, adopts a conformation about the central $\mathrm{C}-\mathrm{C}$ bond that places the two carboxylate groups in an anti orientation. The crystal consists of layers of two-dimensional arrays of 2,3-diphenylsuccinate dianions which are linked by bridging Ca^{2+} cations. The unit cell contains two Ca^{2+} cations in an unusual fourmembered $\mathrm{Ca}-\mathrm{O}-\mathrm{Ca}-\mathrm{O}$ ring in which the bridging O atoms belong to water molecules rather than carboxylates, i.e. poly[[[di- μ-aqua-bis[pentaaquacalcium(II)]]- μ-(meso-2,3-di-phenylsuccinato- $\left.O: O^{\prime}\right)$] succinate dihydrate].

Figure 1
Representation of the unit cell of (I), drawn with 40% probability displacement ellipsoids. The uncoordinated water molecules and non-aqueous H atoms are not shown [symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x$, $1-y,-z]$.

Comment

As part of our ongoing study of shape-switchable molecules (Monahan et al., 1998), we have examined some of the structural and environmental factors that control the conformation of meso-2,3-succinate derivatives (${ }^{-} \mathrm{O}_{2} \mathrm{CCHXCHXCO}{ }_{2}^{-}$). In the case of $X=\mathrm{OH}$ (meso-tartrate), previous NMR evidence indicates that in aqueous solution, the dianion adopts a conformation with the carboxylate groups in a gauche arrangement when the molecule is viewed along the central C2-C3 bond (Ascenso \& Gil, 1980). It was of interest to know if other derivatives adopted, or could be forced to adopt,

the same unusual conformation. The conformations in alkaline solution were assigned from vicinal $\mathrm{H}-\mathrm{H}$ coupling constants $\left({ }^{3} J_{\mathrm{HH}}\right)$. In the case of $X=\mathrm{OCH}_{3},{ }^{3} J_{\mathrm{HH}}=5.5 \mathrm{~Hz}$, which indicates that a gauche conformation is predominant (Ascenso \& Gil, 1980). In the case of $X=\mathrm{Br}$ and $X=\mathrm{Ph}$, the ${ }^{3} J_{\mathrm{HH}}$ values of 11.4 and 12.5 Hz , respectively, suggest conformations with the carboxylate groups in an anti orientation. In the case of $X=\mathrm{Ph}$, attempts were made to induce a conformational change to gauche by adding CaCl_{2} or MgCl_{2} to the basic aqueous solutions. In both cases, there were only minor changes in ${ }^{3} J_{\mathrm{HH}}$ values $(<0.5 \mathrm{~Hz})$, indicating that even in the presence of chelating dications, meso-2,3-diphenylsuccinate
remains in an anti conformation. Since this result is counter to that obtained with a related system (Monahan et al., 1998), we decided to confirm our structural assignments with an X-ray analysis of the title crystalline calcium meso-2,3diphenylsuccinate, (I).

The crystal structures of a number of succinate salts are known, including the monoand trihydrates of calcium
succinate (Karipides \& Reed, 1980; Mathew et al., 1994). However, this is the first reported structure of a 2,3 -diphenylsuccinate salt. X-ray analysis of (I) shows that the molecule adopts an anti conformation about the C2-C3 bond (Fig. 1). The crystal consists of layers of a two-dimensional array of succinate dianions that are linked by bridging Ca^{2+} ions. Along one axis, the carboxylates are directly bonded to the Ca^{2+} ions, whereas along the other axis they are hydrogen bonded to bridging water molecules. The phenyl rings pack in face-to-face and edge-to-face orientations to form squareshaped nanotubes with aromatic walls, and the interiors of the tubes contain the hydrated calcium-carboxylate ion pairs.

The literature structures of calcium succinate show the Ca and the carboxylate O atoms in two types of four-membered rings (Karipides \& Reed, 1980; Mathew et al., 1994). Either a carboxylate group forms a bidentate $\mathrm{Ca}-\mathrm{O}-\mathrm{C}-\mathrm{O}$ ring or it provides a bridging monodentate O atom which is part of a four-membered $\mathrm{Ca}-\mathrm{O}-\mathrm{Ca}-\mathrm{O}$ ring. As shown in Fig. 1, compound (I) forms a different type of $\mathrm{Ca}-\mathrm{O}-\mathrm{Ca}-\mathrm{O}$ ring in which the bridging O atoms belong to water molecules rather than to carboxylates. The internuclear $\mathrm{Ca} \cdots \mathrm{Ca}$ distance is 4.3110 (7) \AA, which is longer than the range 3.98-4.01 \AA found in the literature succinate $\mathrm{Ca}-\mathrm{O}-\mathrm{Ca}-\mathrm{O}$ rings (Karipides \& Reed, 1980; Mathew et al., 1994).

Experimental

meso-2,3-Diphenylsuccinic acid ($182 \mathrm{mg}, 0.673 \mathrm{mmol}$), synthesized according to the method of Wawzonek (1940), was added to a solution of $\mathrm{Ca}(\mathrm{OH})_{2}(50 \mathrm{mg}, 0.673 \mathrm{mmol})$ in water $(100 \mathrm{ml})$. Slow evaporation of the water produced crystals of (I) suitable for analysis.

Crystal data

$\left[\mathrm{Ca}\left(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=434.45$
Triclinic, $P \overline{1}$
$a=6.2394$ (8) A
$b=11.6342(8) \AA$
$c=14.1648$ (12) \AA
$\alpha=89.697$ (7) ${ }^{\circ}$
$\beta=88.440(9)^{\circ}$
$\gamma=81.320(8)^{\circ}$
$V=1016.1(2) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.420 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=15-16^{\circ} \\
& \mu=0.364 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate-like, colorless } \\
& 0.42 \times 0.40 \times 0.15 \mathrm{~mm} \\
& \\
& R_{\text {int }}=0.010 \\
& \theta_{\text {max }}=24.97^{\circ} \\
& h=-7 \rightarrow 0 \\
& k=-13 \rightarrow 13 \\
& l=-16 \rightarrow 16 \\
& 3 \text { standard reflections } \\
& \text { every } 200 \text { reflections } \\
& \text { frequency: } 120 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0345 P)^{2}\right. \\
& \quad+0.5761 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=-0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Ca}-\mathrm{O} 3$	$2.3799(13)$	$\mathrm{Ca}-\mathrm{O} 2$	$2.4822(13)$
$\mathrm{Ca}-\mathrm{O} 7$	$2.4093(12)$	$\mathrm{Ca}-\mathrm{O} 5$	$2.5017(15)$
$\mathrm{Ca}-\mathrm{O} 6$	$2.4237(14)$	$\mathrm{Ca} \cdots \mathrm{Ca}^{\mathrm{i}}$	$4.3110(7)$
$\mathrm{Ca}-\mathrm{O} 4$	$2.4728(13)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.528(3)$
			$146.65(4)$
$\mathrm{O} 3-\mathrm{Ca}-\mathrm{O} 7$	$73.03(5)$	$\mathrm{O} 7-\mathrm{Ca}-\mathrm{O} 1$	$121.18(5)$
$\mathrm{O} 3-\mathrm{Ca}-\mathrm{O} 6$	$138.96(5)$	$\mathrm{O} 6-\mathrm{Ca}-\mathrm{O} 1$	$133.04(4)$
$\mathrm{O} 7-\mathrm{Ca}-\mathrm{O} 6$	$78.01(5)$	$\mathrm{O} 5-\mathrm{Ca}-\mathrm{O} 1$	$70.89(4)$
$\mathrm{O} 3-\mathrm{Ca}-\mathrm{O} 4$	$78.32(5)$	$\mathrm{O} 3-\mathrm{Ca}-\mathrm{Ca}$	$136.09(11)$
$\mathrm{O} 3-\mathrm{Ca}-\mathrm{O} 2$	$142.01(5)$	$\mathrm{C} 1-\mathrm{O} 7-\mathrm{Ca}$	$111.3(2)$
$\mathrm{O} 7-\mathrm{Ca}-\mathrm{O} 2$	$141.86(4)$	$\mathrm{C}^{\mathrm{i}}-\mathrm{C} 2-\mathrm{C} 3$	$110.1(2)$
$\mathrm{O} 4-\mathrm{Ca}-\mathrm{O} 2$	$106.93(5)$	$\mathrm{C}^{\mathrm{ii}}-\mathrm{C} 2-\mathrm{C} 1$	
$\mathrm{O} 4-\mathrm{Ca}-\mathrm{O} 5$	$154.35(5)$		
			$-58.3(2)$
$\mathrm{O} 6-\mathrm{Ca}-\mathrm{O} 7-\mathrm{C} 1$	$7.2(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x, 1-y,-z$.

Phenyl H atoms were refined with a riding model. All other H atoms were refined with a free variable to restrain $\mathrm{H}-\mathrm{O}$ and $\mathrm{H} \cdots \mathrm{H}$ distances.

Data collection: CAD-4 ARGUS (Enraf-Nonius, 1994); cell refinement: CAD-4 ARGUS; data reduction: CHI90S (Boyle, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Siemens, 1994).

This work was supported by the National Science Foundation, USA, and by the University of Notre Dame.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1102). Services for accessing these data are described at the back of the journal.

References

Ascenso, J. \& Gil, V. M. S. (1980). Can. J. Chem. 58, 1376-1379.
Boyle, P. D. (1997). CHI90S. North Carolina State University, USA.
Enraf-Nonius (1994). CAD-4 ARGUS. Version of 1994. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Karipides, A. \& Reed, A. T. (1980). Acta Cryst. B36, 1377-1381.
Mathew, M., Takagi, S., Fowler, B. O. \& Markovic, M. (1994). J. Chem. Crystallogr. 24, 437-440.
Monahan, C., Bien, J. T. \& Smith, B. D. (1998). J. Chem. Soc. Chem. Commun. pp. 431-432.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wawzonek, S. (1940). J. Am. Chem. Soc. 62, 745-749.

